From Vision to System: Prototyping with Ease

Isaac J. Galvan – Product Owner for Illinois App, Technology Services Bradly Alicea – Community Manager, ROKWIRE

Prototypes are conversation starters

Prototypes are one of a kind

Prototypes are low-resolution

CONJUTER

10k

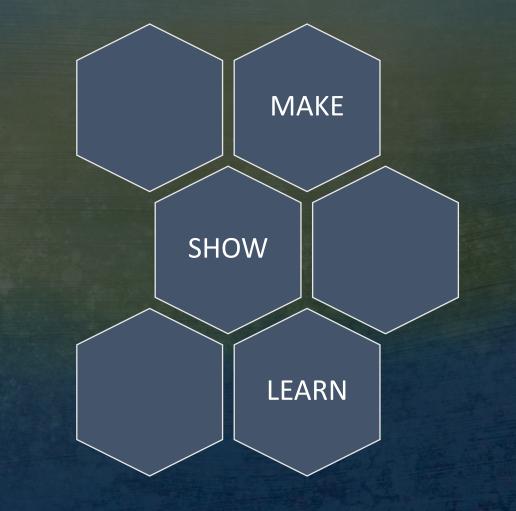
4

Consulter

Δ

Stall Stall

RORMATION


4

ALC INCO

Illinios Podcasts

Experience the podcasts of Illinois. An app for rapid prototyping.

Creating a prototype

The User Story

As a university community member, I want to discover podcasts created at Illinois so I can learn about the exciting going-ons on campus.

The Canvas

Illinois Podcasts

All Podcasts

One More Time Illinois Bands
Family Financial Feuds University Extension
Rising to the Challenge U of I System
Illinois Innovators College of Engineering
Inside Fighting Illini Athletics Fighting Illini
#askACES College of ACES
Environmental Almanac WILL

Illinois Podcasts

Producers

WILL	
University Extension	

College of Engineering

All Producers

All Podcasts

Out Standing in the Field

Natural daily

Wellness Daily

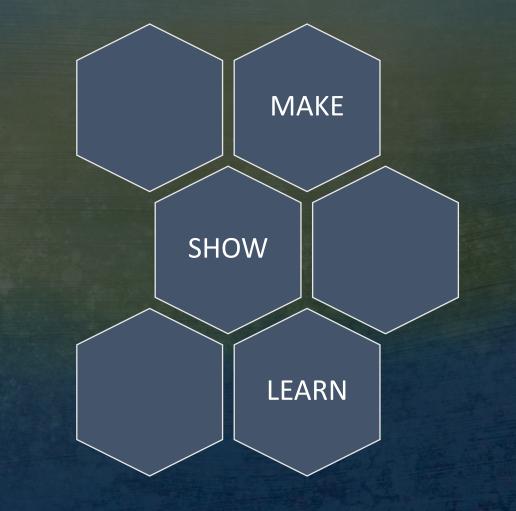
All Colleges

Illinois Podcasts

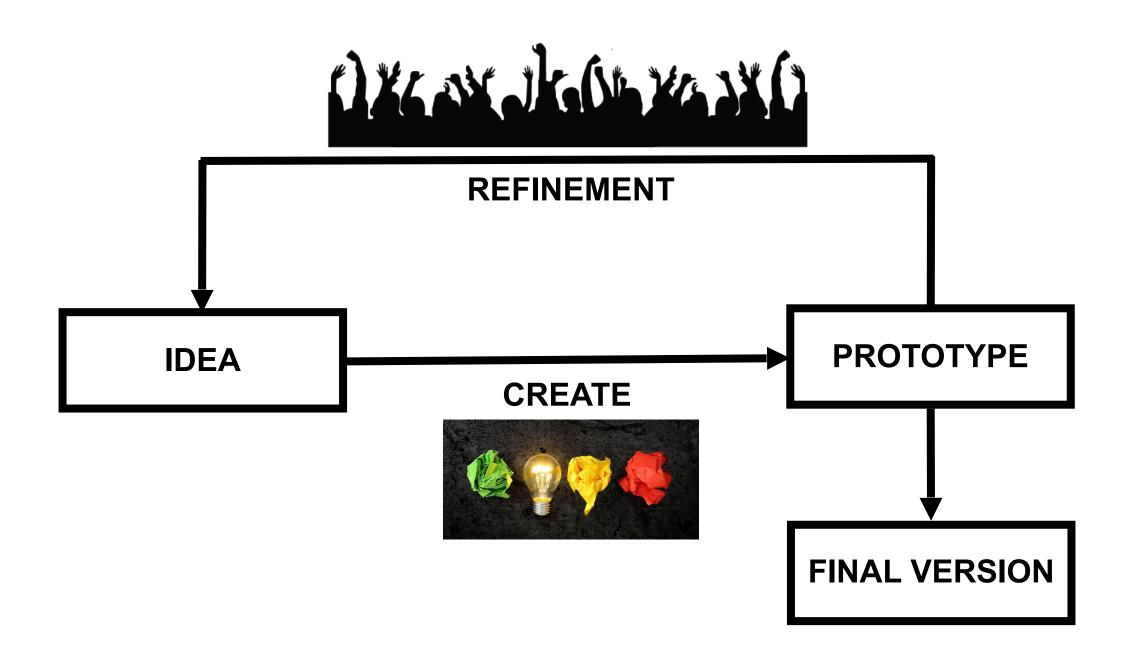
Producers

WILL	College of Engineering
University Extension	Illinois Public Media
All Producers	

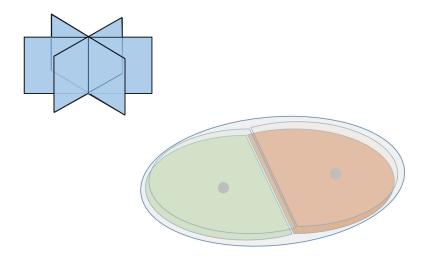
Illinois Podcasts

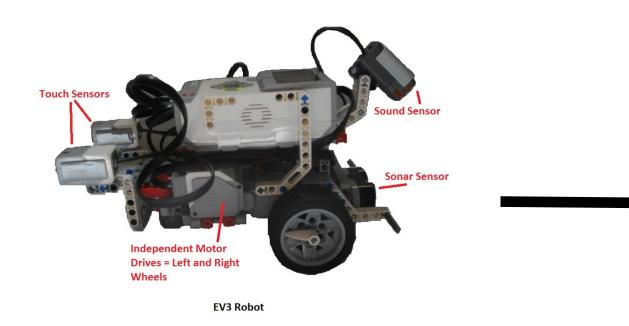

All Podcasts

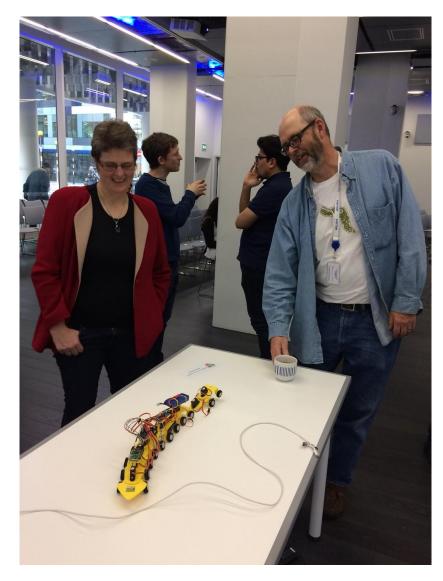
One More Time Illinois Bands
Family Financial Feuds University Extension
Rising to the Challenge U of I System
Illinois Innovators College of Engineering
Inside Fighting Illini Athletics Fighting Illini
#askACES College of ACES


Environmental Almanac

Creating a prototype


Open-source Rapid Prototyping Example 1


OpenWorm robots


Open-source collaborative papers

OpenWorm robots

Circa 2013

Use a computational model of the connectome to move the robot.

Circa 2018

🖟 openw	orm / robots						
<> Code	() Issues 5	່າງ Pull requests	➢ Actions	III Projects	🛄 Wiki	Security	∠ Insights

Why use Github?

ະ master - ະ 2 branches	🟷 0 tags	Go to file Add file -	⊻ Code -	About
portegys Merge pull request a	#7 from jacopomaroli/improve_portability	✓ 6c20f74 on Aug 1	🕑 45 commits	C. elegans robots
WormESP32	Constrain maximum steps		2 years ago	🛱 Readme
WormHost	Control servos with segment angles		3 years ago	
🖿 WormRPi	ESP32 food foraging with ultrasonic of	distance sensor	2 years ago	Releases
WormSim	improve portability		3 months ago	No releases published
assembly	Include description paper		2 years ago	
docs	Include description paper		2 years ago	Packages
🗅 .gitignore	empty line EOF		3 months ago	No packages published
B README.md	Include description paper		2 years ago	

om/research.html..

Contributors 5

á 🕕 🔁 🌒

Languages

• C 75.9% • MATLAB 7.1% • C++ 4.6% • Makefile 3.2% • Shell 3.0% • Fortran 2.4% **Other** 3.8%

README.md

robots

C. elegans robots.

The goal of this project is twofold:

1. To build a robot that simulates the neuromuscular function of a C. elegans nematode worm.

2. To specify a kit of parts and instructions that will allow a student to also build the robot.

The robot is controlled by a Raspberry Pi/ESP32 processor that contains a recorded simulation of the worm's neuromuscular system (see references). The robot's body is a sequence of segments that mutually exert simulated muscle contractions impemented by servos.

Folders:

- 1. WormHost: PC code to communicate with the onboard Raspberry Pi.
- 2. WormRPi: Raspberry Pi onboard code.
- 3. WormESP32: ESP32 onboard code.
- 4. WormSim: C. elegans neuromuscular simulator.
- 5. assembly: parts list, 3D printing .stl shape files, and assembly instructions.
- 6. docs: robot description.

References: Boyle, Berri and Cohen, "Gait modulation in C. elegans: an integrated neuromechanical model",

Gode ① Issues 5 ३ Pull requests → Actions Ⅲ Projects □ Wiki ① Security └ Insights

Why use Github?

Open parts list

robots

C. elegans robots.

The goal of this project is twofold:

1. To build a robot that simulates the neuromuscular function of a C. elegans nematode worm.

2. To specify a kit of parts and instructions that will allow a student to also build the robot.

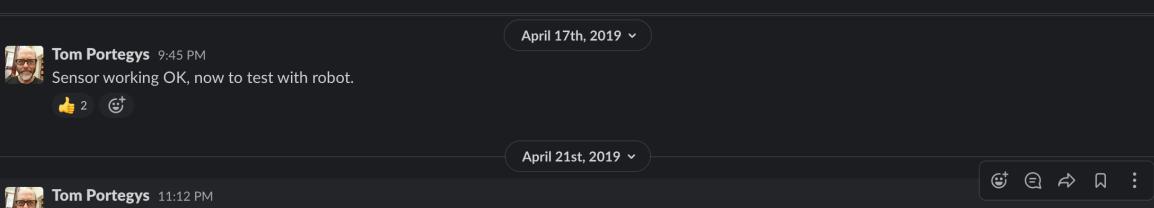
The robot is controlled by a Raspberry Pi/ESP32 processor that contains a recorded simulation of the worm's neuromuscular system (see references). The robot's body is a sequence of segments that mutually exert simulated muscle contractions impemented by servos.

Folders:

- 1. WormHost: PC code to communicate with the onboard Raspberry Pi.
- 2. WormRPi: Raspberry Pi onboard code.
- 3. WormESP32: ESP32 onboard code.
- 4. WormSim: C. elegans neuromuscular simulator.
- 5. assembly: parts list, 3D printing .stl shape files, and assembly instructions.
- 6. docs: robot description.

References: Boyle, Berri and Cohen, "Gait modulation in C. elegans: an integrated neuromechanical model",

About ₽ master - ᢞ 2 branches ▷ 0 tags Go to file Add file -🞍 Code 🚽 C. elegans robots Ŕ portegys Merge pull request #7 from jacopomaroli/improve_portability ✓ 6c20f74 on Aug 1 ⓑ 45 commits C tom.portegys.com/research.html.. WormESP32 Constrain maximum steps 2 years ago C Readme WormHost Control servos with segment angles 3 years ago WormRPi ESP32 food foraging with ultrasonic distance sensor 2 years ago Releases WormSim improve portability 3 months ago No releases published assembly Include description paper 2 years ago Include description paper docs 2 years ago Packages ß .aitianore empty line EOF 3 months ago No packages published ß README.md Include description paper 2 years ago


Contributors 5

🔬 📵 🔁 🧶 🥔

Languages • C 75.9% • MATLAB 7.1% • C++ 4.6% • Makefile 3.2% • Shell 3.0% • Fortran 2.4% • Other 3.8%

Provides an inventory of which languages are most frequently used

The sonic sensor has an unfortunately wide receptor field, but I did get a couple of successful tests: https://www.youtube.com/watch?v=BD-n1SASU4I https://www.youtube.com/watch?v=OIZyOVygVxw

- **YouTube** | Tom Portegys
- C. elegans robot seeks food to its left 🝷

Testing and deployment via Slack

• enables world-wide collaboration and brainstorming.

2+

236

(i)

April 22nd, 2019 ~

Shane Gingell 💬 11:18 PM

I am thinking the battery you have dips voltage when you run the servos

To get the TOF sensor to work while the servos are running means you have 2 options.

11:21 **1.** attach a capacitor to the battery, this is what the Quad copter guys do as their motors use crazy high sudden draw of current. something like this https://oscarliang.com/capacitors-mini-guad/

😢 Oscar Liang

Capacitors For Noise Filtering in Mini Quad - Oscar Liang

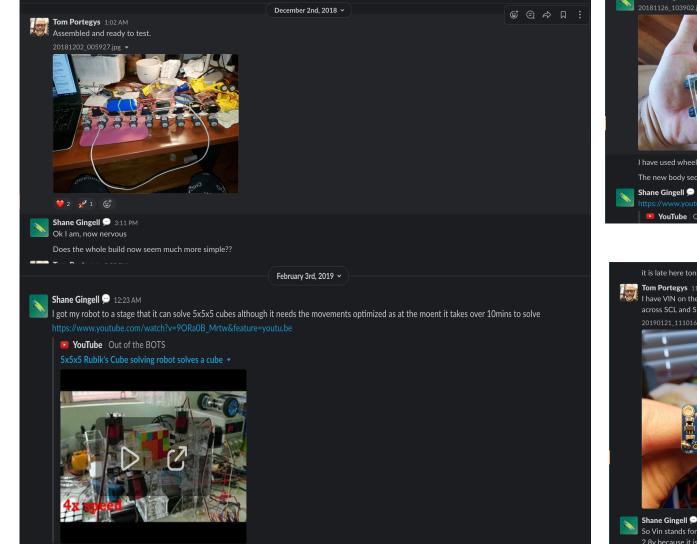
Capacitors can make your FPV video signal cleaner, and your mini quad fly better. In this tutorial we will explain what types of low ESR capacitor you should get and why low ESR is important, and where to install the caps in a racing drone.

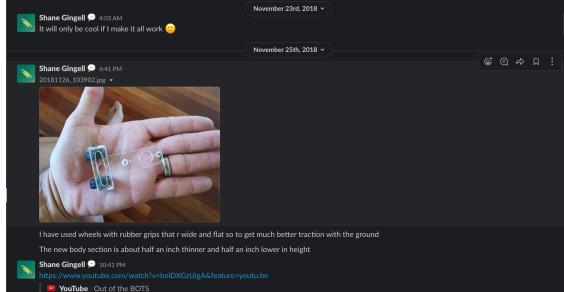
Jul 27th, 2018

Shane Gingell 💬 11:27 PM

or 2. use a seperate little battery for the tof sensor. The TOF sensor runs on 2.8v but it has an on board voltage regulater so it can be powered by higher voltages. U should be able to pwer it very nicely on any tiny little 1S lithuim battery like this https://www.sparkfun.com/products/13853 you can connect the positive from battery to the TOF sensor then connect a common ground from battery to both TOF sensor and My ESP32 board

🟓 sparkfun.com


Lithium Ion Battery - 110mAh

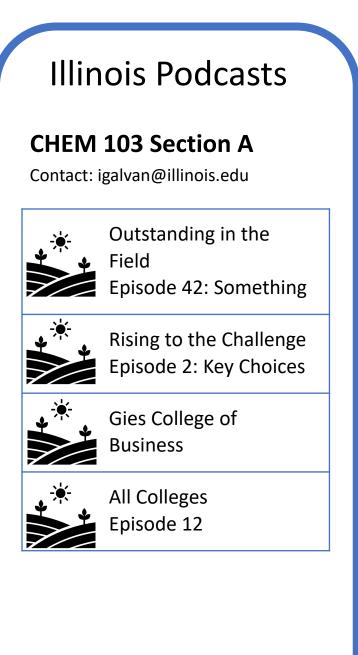

This is a very small, extremely light weight battery based on Lithium Ion chemistry. This is the highest energy density currently in production. Each cells

Iterative testing and conversations in Slack

it is late here tonight but I will hook up mine in the morning and 🗍 January 21st, 2019 🗸 🦻 if I can work why yours isn't working.

Tom Portegys 11:23 AM

I have VIN on the board connected to SHDN on the chip. But it should be 3V3 on the board? I also had a problem soldering accidentally globbing solder across SCL and SDA but I think that should be OK now (see pic).



Shane Gingell 💬 4:43 PM

So Vin stands for voltage in so Vin on my board is the voltage in before the volatge regulator drops it down to 3.3v for the circuits. The TOF sensor runs on 2.8v because it is designed for power saving for mobile devices like phones. So the sensor has 3.3v Vin then it has a voltage regulator on the board that drops it down to 2.8v (see the black chip to far left in ur pic)

The User Story

As an instructor, I want to to share episode with my students so they can listen to them easily and we can discuss them in class.

All Classes

Chem 103 Section A

AgSci 12 Section 123

Spanish 223

Art History

Illinois Podcasts

CHEM 103 Section A

Contact: igalvan@illinois.edu

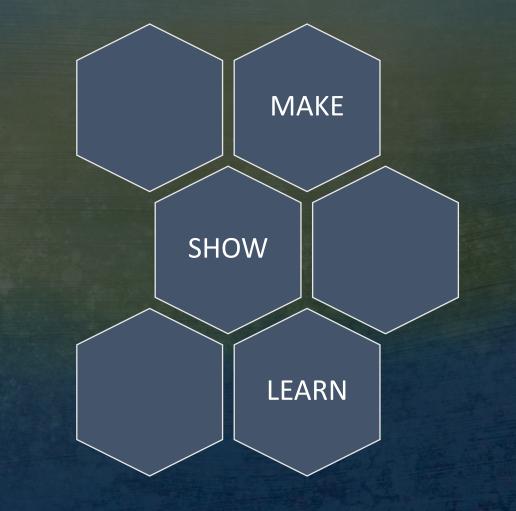
Following

November 13, 2020

Out Standing in a Field Episode 42: Something

Rising to the Challenge Episode 2: Key Choices

November 7, 2020


Business Podcast 18: Learning to Fly

All Colleges Episode 12

My Classes ADV 460 Innovation in Advertising Next: 2020-11-13 **BADM 540 Frontiers in** Technology Next: 2020-11-7 **All Classes** Chem 103 Section A Next: 2020-11-13 AgSci 12 Section 123 Next: 2020-11-7 Spanish

Creating a prototype

Open-source Rapid Prototyping Example 2

PLOS COMPUTATIONAL BIOLOGY

OPEN ACCESS

EDITORIAL

Ten simple rules for collaboratively writing a multi-authored paper

Marieke A. Frassl 😿 🖾, David P. Hamilton, Blaize A. Denfeld, Elvira de Eyto, Stephanie E. Hampton, Philipp S. Keller, Sapna Sharma, Abigail S. L. Lewis, Gesa A. Weyhenmeyer, Catherine M. O'Reilly, Mary E. Lofton, Núria Catalán

Opportunities and obstacles for deep learning in biology and medicine [update in progress]

Update Underway

A published version of this manuscript from 04 April 2018, termed version 1.0, is available at <u>https://doi.org/10.1098/rsif.2017.0387</u>. A new effort is underway to update the manuscript to a version 2.0 that is current as of the first half of 2020. New authors and links to new sections are available in <u>GitHub Issue #959</u>.

This manuscript (<u>permalink</u>) was automatically generated from <u>greenelab/deep-review@cfa2a35</u> on August 10, 2020.

Authors

Version 2.0 authors

O Casey S. Greene^{2.1,2.2®,†},
 O Daniel C. Elton^{2.3®},
 Alexander J. Titus^{2.4®},
 Anthony Gitter^{2.5,2.6®,†},
 Daniel S. Himmelstein^{2.7®},
 Brock C. Christensen^{2.4®},
 Joshua J. Levy^{2.8®},
 <u>The Version 1.0 Deep Review Authors</u>

Collaborative documents on Github:

Academic literature reviews.

Description of software and methods.

Author order for version 2.0 is currently randomized with each new build.

[†] — To whom correspondence should be addressed: gitter@biostat.wisc.edu (A.G.) and greenescientist@gmail.com (C.S.G.)

Using issues to assign tasks and organize related resources

	☆ Star 1.1k 양 Fork
ode 🕐 Issues 418 🕺 Pull requests 2 🕞 Actions 🖽 Projects 🕮 Wiki 😲 Security 🗠 Insights	
Want to contribute to greenelab/deep-review? If you have a bug or an idea, read the contributing guidelines before opening an issue.	
Filters • Q is:issue is:open Stabels 18 Stabels 18	nes 0 New issue
① 418 Open ✓ 228 Closed Author ▼ Label ▼ Projects ▼ Milestones ▼	Assignee - Sort -
Add a Systematic Text-Mining Component to the Review? #1022 opened 2 days ago by swamidass	
Update for 2020? #1021 opened on Aug 25 by swamidass	Ç 3
Human Protein Atlas (HPA) Cell Type Prediction using Deep Learning and estimating uncertainty #1017 opened on May 15 by birajaghoshal	Ç 2
DeepArk: modeling cis-regulatory codes of model species with deep learning paper #1016 opened on Apr 28 by evancofer	
LISA: Towards Learned DNA Sequence Search paper #1015 opened on Apr 28 by evancofer	D 1
Applications in sleep research #1013 opened on Apr 6 by SystemsResearch	Ç 2

Version Control and Rapid Prototyping

Diffs: line-oriented edit distance. Can use this to compare changes in a pull request, previous versions.

Version Control and Rapid Prototyping

History for GSoC-Braitenberg-Vehicles / Manuscript / manuscript-doc.md

Commits on Feb 28, 2020	
Update manuscript-doc.md Orthogonal-Research-Lab committed on Feb 28	Verified e52a4ec <>
Update manuscript-doc.md M Orthogonal-Research-Lab committed on Feb 28	Verified Tb26099 <>
Commits on Feb 24, 2020	
Update manuscript-doc.md im Orthogonal-Research-Lab committed on Feb 24	Verified bed10a2 <>
Commits on Feb 23, 2020	
Update manuscript-doc.md iii Orthogonal-Research-Lab committed on Feb 23	Verified Pb442d1 <>
Update manuscript-doc.md Orthogonal-Research-Lab committed on Feb 23	Verified b0e8f2b <>
Update manuscript-doc.md im Orthogonal-Research-Lab committed on Feb 23	Verified [th] 1cd6532 <>
Update manuscript-doc.md im Orthogonal-Research-Lab committed on Feb 23	Verified (89d7e36 (>
Update manuscript-doc.md im Orthogonal-Research-Lab committed on Feb 23	Verified T3e5db0 <>
Update manuscript-doc.md im Orthogonal-Research-Lab committed on Feb 23	Verified (2) 4587009 (>)

Commit history:

View a history of all c o m m i t s t o a document, recover/ consult versions as needed.

Open Papers with formatting (Markdown with HTML, LaTeX elements)

Please install MathJax Plugin for Github or Math Anywhere Chrome plug-ins to view equations

Braitenberg Vehicles as Developmental Neurosimulation

Stefan Dvoretskii^{1,2}, Ziyi Gong^{2,3}, Ankit Gupta^{2,4}, Jesse Parent², Bradly Alicea^{2, 5}

Raw Blame 🖵 🖉 🛱

¹ Technical University of Munich, ² Orthogonal Research and Education Laboratory, ³ University of Pittsburgh, ⁴ IIT Kharagpur, ⁵, OpenWorm Foundation

Abstract

The connection between brain and behavior is a longstanding issue in the areas of behavioral science, artificial intelligence, and neurobiology. Particularly in artificial intelligence research, behavior is generated by a black box approximating the brain. As is standard among models of artificial and biological neural networks, an analogue of the fully mature brain is presented as a blank slate. This model

27 lines (22 sloc) 2.02 KB

$$O_{x,y,i} = \sum_{k} I_{o,i}^{(k)} \exp\left(\frac{d_{d,y}^{(k)}}{cd_{\max}}\right) \qquad G_{x,y,i} = \sum_{k} I_{g,i}^{(k)} \Theta(d' - d_{x,y}^{(k)})$$
(2)

where $O_{x,y,i}$ is the *i*th olfactory feature sensible at position (x, y), and $I_{o,i}^{(k)}$ is the *i*th feature of the odor omitted by stimulus source k; similarly, G and I_g are for gustatory features. $d_{d,y}^{(k)}$ is the Euclidean distance from (x, y) to source k, while d_{\max} is the maximum distance in the space, d' is the gustatory sensible threshold, and c is an arbitrary scalar. Θ is the standard Heaviside function.

Li-Hopfield Network

$$\frac{\mathrm{d}x}{\mathrm{d}t} = I + Lf_x(x) - Mf_y(y) - a_x x \qquad \frac{\mathrm{d}g}{\mathrm{d}t} = I_c + Gf_x(x) - a_y y \tag{3}$$

where x and y are the internal states of mitral cells and granule cells. M, G, and L are the weight matrices from granule to mitral, mitral to granule, and mitral to mitral, respectively. f are activation functions, while Γ is a function setting the lower triangular entries to zeros. I is the input and I_c is the constant ("center") input. a is the time constant.

Bidirectional Associate Memory Using Generalized Hebbian Algorithm with Depression

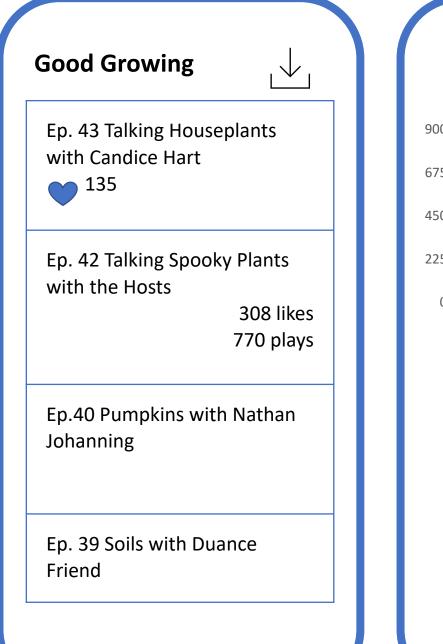
$$\frac{\mathrm{d}W}{\mathrm{d}t} = \eta_t I'_o I_{g^T} - W\Gamma(I'_o I^T_g) - D \qquad D_i j = \frac{\phi}{I'_{o,j} W^2_{ij} + 1} \quad \lim_{t \to \infty} \eta_t = 0 \qquad \lim_{t \to \infty} \sum_t \eta_t = \infty \tag{4}$$

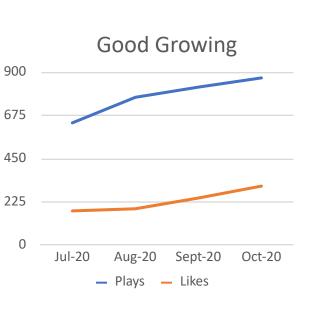
where W is the association between I'_o , the processed olfactory input, and I_g , punished by the depression matrix D with a depression rate ϕ . $D_{ij} \mapsto 0$ if the denominator of D_{ij} is zero.

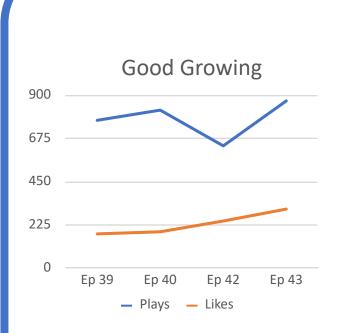
Simple Judgement Unit

$$p = \sum_{i} J_i(I'_{g,i}) \tag{5}$$

 Priori associations, yet this does not consider the realities of biological development and to model the development of an artificial organism that exhibits complex behaviors. We will
 Braitenberg Vehicles (BVs) to model the development of an artificial nervous system. The resulting iors that range from stimulus responses to group behavior that resembles collective motion. Next, if artificial brain networks. Then we will focus on broader themes such as embodied cognition, :tive will then be exemplified by three software instantiations that demonstrate how a BV-genetic ebbian learning model, and multi-agent approaches can be used to approach BV development. We spatial cognition (vehicle-genetic algorithm hybrid model), hinges connecting behavioral and neural model), and cumulative classification (multi-agent approaches). In conclusion, we will revisit ow they might quide future development.


Archiving papers with formatting


🛱 devowo	orm / ALIFE-2020	Watch ▼ 0 ☆ Star 1 ♀ Fork 1	
<> Code	! Issues : Pull requests 🕞 Actions 🛄 Pro	jects 🖽 Wiki 🕛 Security 🗠 Insights	
	ੇ master - ALIFE-2020 / DevoNN workshop / Meta	Go to file Add file -	
	devoworm Add files via upload	3406215 on Jul 24 🕚 History	
	Abstract.tex	3 months ago	
	🖺 Figure 1.png	Add files via upload	3 months ago
	🖺 Figure 2.png	Add files via upload	3 months ago
	🖺 Figure 3.png	Add files via upload	3 months ago
	🗋 alifeconf.sty	Create alifeconf.sty	3 months ago
	🗋 bibliography.bib	Create bibliography.bib	3 months ago


BOTTOM LINE: Building a paper collaboratively in Github *encourages you to adopt* a rapid prototyping methodology!

The User Story

As a podcast creator, I want to know what episodes my listeners enjoyed so I can make more for them.

Thank you

- <u>WWDC 2017: 60 Second</u>
 <u>Prototyping</u>
- <u>https://github.com/rokwire/</u> <u>rokwire-community</u>
- <u>http://publish.illinois.edu/</u> <u>bradly-alicea/</u>
- <u>https://</u> <u>publicaffairs.illinois.edu/</u> <u>services/image-database/</u>

- Isaac J. Galvan igalvan@illinois.edu
- Bradly Alicea –
 <u>balicea@illinois.edu</u>

Website: http://rokwirecommunity.web.illinois.edu

Github: <u>http://www.github.com/rokwire</u>

Community Calls and Public Events coming soon!

Questions? Contact balicea@illinois.edu